Linker histone H1 is essential for Drosophila development, the establishment of pericentric heterochromatin, and a normal polytene chromosome structure.

نویسندگان

  • Xingwu Lu
  • Sandeep N Wontakal
  • Alexander V Emelyanov
  • Patrick Morcillo
  • Alexander Y Konev
  • Dmitry V Fyodorov
  • Arthur I Skoultchi
چکیده

We generated mutant alleles of Drosophila melanogaster in which expression of the linker histone H1 can be down-regulated over a wide range by RNAi. When the H1 protein level is reduced to approximately 20% of the level in wild-type larvae, lethality occurs in the late larval - pupal stages of development. Here we show that H1 has an important function in gene regulation within or near heterochromatin. It is a strong dominant suppressor of position effect variegation (PEV). Similar to other suppressors of PEV, H1 is simultaneously involved in both the repression of euchromatic genes brought to the vicinity of pericentric heterochromatin and the activation of heterochromatic genes that depend on their pericentric localization for maximal transcriptional activity. Studies of H1-depleted salivary gland polytene chromosomes show that H1 participates in several fundamental aspects of chromosome structure and function. First, H1 is required for heterochromatin structural integrity and the deposition or maintenance of major pericentric heterochromatin-associated histone marks, including H3K9Me(2) and H4K20Me(2). Second, H1 also plays an unexpected role in the alignment of endoreplicated sister chromatids. Finally, H1 is essential for organization of pericentric regions of all polytene chromosomes into a single chromocenter. Thus, linker histone H1 is essential in Drosophila and plays a fundamental role in the architecture and activity of chromosomes in vivo.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The SU(VAR)3-9/HP1 complex differentially regulates the compaction state and degree of underreplication of X chromosome pericentric heterochromatin in Drosophila melanogaster.

In polytene chromosomes of Drosophila melanogaster, regions of pericentric heterochromatin coalesce to form a compact chromocenter and are highly underreplicated. Focusing on study of X chromosome heterochromatin, we demonstrate that loss of either SU(VAR)3-9 histone methyltransferase activity or HP1 protein differentially affects the compaction of different pericentric regions. Using a set of ...

متن کامل

BEN domain protein Elba2 can functionally substitute for linker histone H1 in Drosophila in vivo

Metazoan linker histones are essential for development and play crucial roles in organization of chromatin, modification of epigenetic states and regulation of genetic activity. Vertebrates express multiple linker histone H1 isoforms, which may function redundantly. In contrast, H1 isoforms are not present in Dipterans, including D. melanogaster, except for an embryo-specific, distantly related...

متن کامل

Drosophila CAF-1 regulates HP1-mediated epigenetic silencing and pericentric heterochromatin stability.

Chromatin assembly factor 1 (CAF-1) was initially characterized as a histone deliver in the process of DNA-replication-coupled chromatin assembly in eukaryotic cells. Here, we report that CAF-1 p180, the largest subunit of Drosophila CAF-1, participates in the process of heterochromatin formation and functions to maintain pericentric heterochromatin stability. We provide evidence that Drosophil...

متن کامل

Heterochromatic DNA sequences in the polytene chromosomes of Drosophila melanogaster salivary glands

The term ‘heterochromatin’ denotes chromosomal regions that remain condensed throughout most of the cell cycle, show late replication during normal cell cycles, under-replication in polytene chromosomes, extremely low gene density and high density of repeated sequences. Heterochromatin is characterized by modified histones H3 and H4 and high regularity of nucleosomes (reviewed by Gatti and Pimp...

متن کامل

Overexpression of the SuUR gene induces reversible modifications at pericentric, telomeric and intercalary heterochromatin of Drosophila melanogaster polytene chromosomes.

The SuUR (suppressor of underreplication) gene controls late replication and underreplication of DNA in Drosophila melanogaster polytene chromosomes: its mutation suppresses DNA underreplication whereas additional doses of the normal allele strongly enhances underreplication. The SuUR protein is localized in late replicating and underreplicating regions. The N-terminal part of the SuUR protein ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Genes & development

دوره 23 4  شماره 

صفحات  -

تاریخ انتشار 2009